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Abstract. Ring signatures allow members of a group (called ring) to sign a message anonymously
within the group, which is chosen ad hoc at the time of signing (the members do not need to have
interacted before). In this paper, we propose a physical version of ring signatures. Our signature is based
on one-out-of-many signatures, a method used in many real cryptographic ring signatures. It consists
of boxes containing coins locked with padlocks that can only be opened by a particular group member.
To sign a message, a group member shakes the boxes of the other members of the group so that the
coins are in a random state (“heads” or “tails”, corresponding to bits 0 and 1), and opens their box to
arrange the coins so that the exclusive “or” of the coins corresponds to the bits of the message they
wish to sign. We present a prototype that can be used with coins, or with dice for messages encoded
in larger (non-binary) alphabets. We suggest that this system can be used to explain ring signatures
to the general public in a fun way. Finally, we propose a semi-formal analysis of the security of our
signature based on real cryptographic security proofs.
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1 Introduction

The signature is a fundamental primitive of public key cryptography that allows the owner of a secret key to
sign messages in such a way that anyone can verify the signature using a public key. In some cases, it may
be useful to allow group members to sign on behalf of the group without revealing their personal identity.
A simple solution is to agree a priori on a public and secret key pair within the group, but this solution
does not allow the signer to dynamically choose group members without consulting them when signing the
message.

In 2001, Rivest, Shamir, and Tauman introduced ring signatures in their seminal paper “How to Leak a
Secret” [13]. In this primitive, a user generates a signature on behalf of the group using their own secret key
and the public keys of the group members (which the user can select when signing). The term “ring” refers
to the method of signing used in this pioneering paper: the signer generates a chain of values depending on
the message, using successively the public keys of all the group members except their own to encrypt the
values. Then, using their own secret key, the signer decrypts the last value in the chain to append it to the
beginning of the chain, thus closing the chain in a ring. To verify the signature, a user verifies that the ring
is correct by reproducing the successive encryptions with the group members public keys, but cannot guess
with which key the ring has been closed.

Ring signatures have always been of great interest because of their relevance to real-world problems, both
technical and societal. The first motivation for ring signatures is to protect whistleblowers [13]. For instance,
an employee of a company with illegal practices could, if each employee had a public key, expose those
practices by signing as a member of the company, but without revealing their exact identity. Less directly,
ring signatures have been used in many protocols, such as e-voting and e-cash [17], to guarantee anonymous
membership. More recently, they have been used to anonymize certain actions on the blockchain [15], and
to prevent transactions in the Monero cryptocurrency from being traced [16].

This primitive is therefore fundamental to many tools designed for a wide audience without advanced
computer or mathematical skills. We believe that the use of security technology is only possible if users
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trust it, which is only possible if they feel that they have understood how their data is being processed and
protected. It is thus necessary to find straightforward and convincing ways to explain the mechanisms used
in ring signatures in order to inform and reassure the people who use its applications.

In this paper we propose a physical ring signature construction based on everyday objects such as boxes,
padlocks, coins, dice, and glass. The actions to be performed are simple and consist of opening and closing
the padlocks on the boxes, shaking the boxes, or looking through the glass to see the value of the coins and
dice. Some basic calculations are also required, such as adding small integers, which can be done with a
calculator. The overall look of the device is intriguing, and it is fun and easy enough for children to use. We
believe that this playful aspect makes it an accessible tool for popularising the concept of ring signatures to
the general public.

Technical Overview of our Contributions. Our signature mechanism is based on one-out-of-many signa-
tures [1], which are themselves inspired by proofs of partial knowledge [6]. This general paradigm has been
widely used to construct ring signatures, so the mechanism of our physical ring signature gives an accurate
idea of how cryptographic ring signatures are actually designed. In a nutshell, this paradigm is based on
message-randomizable signatures, i.e., signature schemes where it is possible to construct signatures on ran-
dom messages even without knowing the signer’s secret key (on the other hand, it is impossible to construct
a signature on a fixed message). To sign a message within a group, the signer creates signatures on random
values for the public key of all the other members of the group. The signer then computes the bitwise ex-
clusive “or” of all the random values and the message, and signs the result with their secret key. The ring
signature is the set of signed values. To verify it, the verifier checks the signature of each value with the
public key of the corresponding group member and verifies that the bitwise exclusive “or” of all the values is
equal to the message. This method is based on the indistinguishability of the signature made with the secret
key from those generated for random values, and on the impossibility of stumbling upon random values that
will give the message if no secret key is known.

The first building block in our construction is a physical message-randomizable signature. To do this,
we use compartmentalized boxes with a transparent top and place a coin with two different sides in each
compartment. The signer manually signs padlocks to which they have the key and locks the boxes with
these padlocks. These locked boxes are their public keys, and they distribute them to everyone. To sign
a binary message, the signer takes one of their boxes, opens it with their key, and arranges the coins so
that they correspond to the bits in the message (we assign “heads” to 0 and “tails” to 1). Note that this
operation requires their key. They then close the box. To verify the signature, the verifier checks the manual
signature on the padlock and checks that the value of the coins matches the message by looking through the
transparent top (without opening the box). To obtain a signature on a random message, anyone can take
a box from the signer and shake it so that the coins are disturbed and end up in random “heads” or “tails”
state.

The general construction of the physical ring signature results from using the one-out-of-many signatures
method applied to our physical message-randomisable signature. As it stands, this construction allows a
user to generate ring signatures for random messages, which can be problematic in some cases. We propose
a countermeasure where the message must start with a given binary string. To sign longer messages, it is
possible to replace the coins with dice. Our prototype uses 30-sided dice, which can encode the letters of the
alphabet and certain punctuation marks. Finally, we highlight the security assumptions that our material
must verify for our signature to be secure, and we prove the security of our signature in a semi-formal way
using a sequence of games [14]. By semi-formal, we mean that we try to get close to a real computational
security proof. This is not entirely possible because our assumptions are physical and not computational,
whereas the ring signature security model considers an adversary modelled by a polynomial time Turing
machine.

Related Works. Many cryptographic tools have been adapted in physical form. For example, several physical
zero-knowledge proofs, mainly using cards and envelopes, have been proposed for many logic puzzles [9,
4]. The use of cards has also been exploited to build secure multi-party computation protocols [12]. Other
works use different tools, such as coin-based secure computation [10] or light cryptography [11], which uses
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light and shadows for specific secure computation protocols. Physical secure auction protocols have also
been proposed [8], one using envelopes and the other a more complex construction using wooden boxes
and padlocks. Another example is the construction of threshold access control using padlocks and latches
placed in certain configurations [7]. However, to the best of our knowledge, no physical ring signature has
ever been proposed, none of the existing physical primitives can be easily adapted to obtain a physical
ring signature, and no physical construction uses a mechanism similar to ours (shaking transparent boxes
containing coins/dice to randomise data).

2 Technical Background

In this section we first define our notations, then recall the definition of ring signatures and their security
properties, and finally recall a property about modular additions.

Notations. (xi)
n−1
i=0 (resp. {xi}n−1i=0 ) denotes the vector (resp. set) containing the idexed elements x0, x1, · · · ,

and xn−1, and Zn denotes the set of integers modulo n (i.e., {i}n−1i=0 ). The expression y ← x denotes the
affectation of the value of the variable x to the variable y, the expression y ← Algo(x) denotes the affectation
of the output of the algorithm Algo on input x to the variable y, and the expression y

$← S denotes the
affectation of a value chosen in the uniform distribution on a set S to the variable y. The acronym p.p.t. in
λ means probabilistic polynomial time in λ (when the context is clear, we omit the parameter λ).

Definition 1 (Ring Signature [2]). Let λ be a security parameter. A ring signature is a tuple of p.p.t.
algorithms (Gen,Sig,Ver) defined as follows:

Gen(λ): on input λ, returns a pair of public/secret keys (pk, sk).
Sig(sk, R,m): on input a secret key sk, a set of public keys R (containing the public key corresponding to

sk), and a message m, returns a signature σ.
Ver(R,m, σ): on input a set of public keys R, a message m, and a signature σ, returns a bit b ∈ {accept,

reject}.

Moreover, for any integers s and j such that j < s, any message m, any (pki, ski) outputted by Gen(λ) for all
i ∈ Zs, and any σ outputted by Sig(skj , {pki}s−1i=0 ,m), the condition Ver({pki}s−1i=0 ,m, σ) = accept is required
to hold.

A secure ring signature is required to satisfy two security properties: unforgeability and anonymity [2]. These
properties are modelled by experiments that simulate the use of a ring signature and where a p.p.t. adversary
tries to perform an attack.

Unforgeability ensures that a user who is not a member of the group cannot generate a valid signature for
a fresh message, even if they can access ring signatures for other messages. In the unforgeability experiment,
the adversary is given public keys (corresponding to secret keys they do not know), and can query an oracle
for signatures on selected messages using these keys. Their goal is to generate a fresh valid ring signature
that has not been generated by the oracle. A ring signature is considered to be unforgeable if no adversary
can succeed in this attack with a significant (non-negligible1) probability.

Definition 2 (Unforgeability [2]). Let λ be a security parameter, let RS = (Gen,Sig,Ver) be a ring
signature, and let A be a p.p.t. algorithm. For any integer s, we define the s-unforgeability experiment on
RS for A as follows:

– The experiment generates s key pairs {(pki, ski)}s−1i=0 and sends {pki}s−1i=0 to A.
– A has access to an oracle Sig(·, ·, ·) that returns a signature generated by Sig(skj , R,m) on query (j, R,m).
– A returns (R∗,m∗, σ∗). The experiment returns 1 iff Ver(R∗,m∗, σ∗) = 1, R∗ ⊆ {pki}s−1i=0 , and no query

(j, R,m) satisfies (R,m) = (R∗,m∗).
1 A function f is negligible in x if for any positive polynomial p, there exists un integer x0 such that for all x > x0,
|f(x)| ≤ 1/p(x)
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RS is said to be unforgeable if for all s and all p.p.t. algorithms A, the probability that the s-unforgeability
experiment returns 1 is negligible in λ.

Anonymity ensures that it is not possible to guess which member of the group is the author of a given
signature. In the anonymity experiment, the adversary is given public/secret keys, chooses two of them, and
is given a ring signature generated from one of these two secret keys (and whose ring contains the two public
keys). The adversary tries to distinguish which of the two keys was used with a non-negligible advantage.

Definition 3 (Anonymity [2]). Let λ be a security parameter, let RS = (Gen,Sig,Ver) be a ring signature,
and let A be a p.p.t. algorithm. For any integer s and any bit b, we define the (s, b)-anonymity experiment
on RS for A as follows:

– The experiment generates s key pairs {(pki, ski)}s−1i=0 and sends {(pki, ski)}s−1i=0 to A.
– A sends (R,m, i0, i1) to the experiment. If R ⊆ {pki}s−1i=0 and (pki0 , pki1) ∈ R2, then the experiment

computes σ ← Sig(skib , R,m), and sends σ to A.
– A returns a bit b∗.

RS is said to be anonymous if for all s and all p.p.t. algorithms A, the probability that A returns 1 on
the (s, 0)-anonymity experiment is negligibly close (in λ) to the probability that A returns 1 on the (s, 1)-
anonymity experiment.

The one-out-of-many signatures paradigm [1] presented in Section 1 uses the following result: for anym ∈ Zn,
if we randomly generate s integers (xi)s−1i=0 whose sum modulo n ism by choosing j ∈ Zs, by randomly drawing
xi

$← Zn for all i 6= j, and by completing with the only possible xj , the integers (xi)s−1i=0 and m do not reveal
any information about j. For instance, for m = 0, n = 2 and s = 2, if we randomly draw x0 then we should
set x1 = x0 to get x0 + x1 mod 2 = 0, and if we randomly draw x1 then we should set x0 = x1; both cases
return (x0, x1) = (0, 0) and (x0, x1) = (1, 1) with the same probability. On the other hand, for m = 1, the
two cases (0, 1) and (1, 0) have the same probability, no matter which element was randomly generated.
This result is generalised for vectors of integers in the following theorem. A proof of this theorem is given in
Appendix A.

Theorem 1. Let N,n, and s be three integers. For any m ∈ ZNn , any pair (i0, i1) ∈ Z2
s, and any distinguisher

D, we have:

Pr

[
∀i ∈ Zs\{i0}, xi $← ZNn ;

∀j ∈ ZN , xi0,j ←
(
mj −

∑s−1
i=0;i6=i0 xi,j

)
mod n;

: 1← D((xi)s−1i=0 )

]
=

Pr

[
∀i ∈ Zs\{i1}, xi $← ZNn ;

∀j ∈ ZN , xi1,j ←
(
mj −

∑s−1
i=0;i6=i1 xi,j

)
mod n;

: 1← D((xi)s−1i=0 )

]

An example of unforgeable and anonymous cryptographic ring signature based on the BLS [3] signature
that follows the one-out-of-many signatures paradigm [1] is given in [5].

3 Our Physical Ring Signature

In this section we present our physical ring signature scheme. We first introduce the material required, then
explain how to use it to design a physical message-randomisable signature, and finally explain how a user
can anonymously sign within a group using it. We illustrate the steps involved with the help of a physical
prototype that we have built.
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3.1 Material

Each member of the ring/group must be provided with indelible felt-tip pens to enable them to make
indelible manual signatures on any surface. Each user must also have an unlimited number of padlocks.
Padlocks belonging to the same user must be identical and have a single key that can be used to open them.
We assume that users have access to an unlimited number of coins whose two sides (heads and tails) are
easily distinguishable. We associate “heads” with the binary value 0 and “tails” with the binary value 1. The
coins and the padlocks we use for our prototype are shown in Figure 1.

Fig. 1. On the left, some coins with red “heads” and blue “tails” associated with the values 0 and 1 and a padlock
with its key, and on the right, a latch on a box, with and without the padlock.

An unlimited number of compartmentalised boxes are also available (see Figure 2), with the following
features:

– The box has a lid that can be opened by a mechanism.
– Each box is divided into N compartments indexed from 0 to N − 1 so that it is not possible to move an

object from one compartment to another when the box is closed.
– When the box is open, a user can freely place or remove objects in each compartment.
– Each compartment has the shape of a parallelepiped whose edges are larger than the diameter of the

coins. A coin in a compartment can therefore move freely within the space of the compartment.
– The lid of the box is transparent so that the top of an object in a compartment can be clearly seen.
– The box has a latch that prevents it from being opened (see Figure 1). This latch must be perfectly

lockable with a padlock, preventing anyone from opening the box without the padlock key.

Fig. 2. A box with 9 compartments and with a slip-on lid.

As explained in Section 1, our ring signature is based on the one-out-of-many signatures paradigm,
which uses message-randomisable signatures. Therefore, we first present how to generate physical message-
randomisable signatures, before showing how to use them to generate our physical ring signature.
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3.2 Key Generation

We have assumed that a user has an unlimited number of identical padlocks and a single key that can be
used to open these padlocks. The user manually signs their padlocks with an indelible felt-tip pen, so that
the signature is visible and can be verified by anyone. The user then fills the compartments of several boxes
by placing a coin in each compartment. The visible side of the coin (“heads” or “tails”) in each compartment
is randomly chosen. The user closes each of these boxes with one of their signed padlocks. These boxes
containing coins and closed by signed padlocks are their public key pk (see Figure 3) and they distribute
them to the other users. If necessary, they can create new ones at any time. Their secret key sk is the key
that opens their padlocks.

3.3 Message-randomisable Signature Generation and Verification

To sign a binary message (mi)
N−1
i=0 of N bits, the signer takes one of their public keys (i.e., a box divided

into compartments numbered from 0 to N − 1 containing coins and closed by a signed padlock for which
they have the key), uses their key to open the padlock and the box to arrange the coins so that the state of
the coin in the i-th compartment (“heads” or “tails”) corresponds to the i-th bit mi of the message, and then
closes the padlock on the box.

To verify this signature, the verifier checks that the padlock in the box has been manually signed by the
signer (by comparing the manual signature with the manual signature on the padlock of one of the signer’s
public keys), and looks through the transparent lid to check that the state of the coins corresponds to the
bits of the message (mi)

N−1
i=0 .

Without knowing the secret key (and therefore without being able to open the box), any user can
generate the signature for a random message by shaking the box: since the diameter of the coins is
smaller than the dimensions of the compartments, the coins can turn on themselves and randomly land on
one of their sides, forming a random binary message.

3.4 Ring Signature Generation

We now show how to use the physical message-randomizable signatures to create physical ring signatures.
Let s be the size of the ring/group. The signer has all the (indexed) public keys R = {pki}s−1i=0 of the members
of the group (including their own), their secret key sk, and wishes to sign a message m = (mi)

N−1
i=0 of N bits.

The index corresponding to their public key is denoted j. Recall that public keys are closed boxes containing
coins whose visible sides are random. For each pki such that i 6= j, the signer shakes the box so that the coins
in the compartments are randomly flipped (this is the mechanism used to generate signatures for random
messages without knowing the key, as described above).

We set ci,k to the binary value associated with the state of the coin in the k-th compartment of the box of
the i-th public key pki. Using their secret padlock key, the signer opens the box corresponding to their public

Fig. 3. A padlocked box (opened then closed) corresponding to a user’s public key, and the padlock key corresponding
to their secret key.
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key pkj and manually arranges the coins (this is the mechanism used to sign a given message by knowing
the key described above) so that

∑s−1
i=0 ci,k mod 2 = mk.

To put it in simple terms, this operation is equivalent to the following: for each bit mi of the message,
if mi = 0 (resp. mi = 1), then the signer places the coin in the i-th compartment of their own box, so that
there is an even (resp. odd) number of coins on “tails” (corresponding to the bit 1) in the i-th compartments
of all the boxes of all members.

The signer then closes the padlock on their box and arranges the boxes in random order. The signature
is the set of all the boxes of the members after these operations.

3.5 Signature Verification

The verifier receives the signature that consists on s padlocked boxes signed by the s members of the group,
and the binary message (mi)

N−1
i=0 . They first check that the padlocks have all been manually signed by

a different member of the group, and that these signatures are valid (by comparing it with the manual
signatures on the padlocks of the group member’s public keys). The verifier sets ci,k to the binary value
associated with the state of the coin in the k-th compartment of the box signed by the i-th member of the
group. They check that

∑N−1
i=0 ci,k mod 2 = mk for each k.

To put it in simple terms, this operation is equivalent to the following: for each bit mi of the message, if
mi = 0 (resp. mi = 1), then the verifier checks that there is an even (resp. odd) number of coins on “tails”
(corresponding to the bit 1) in the i-th compartments of all the boxes of all members. If this is the case,
they accept the signature, if not, they refuse it.

3.6 Preventing the Signing of Random Messages

As it stands, it is possible to generate signatures on random messages without having any padlock key: all
you have to do is take the group member boxes and shake them. The result is a signed message whose bits
are the modulo two additions of the random values associated to the state of the coins in each compartment.
To prevent this, the following countermeasure can be applied: given a security parameter λ, the first λ bits
of the signed message must be 0, otherwise the signature is not valid. Thus, the probability of obtaining a
valid signature by shaking the boxes is 1/2λ, which is negligible in λ. On the other hand, the size of the
actual signed message becomes N − λ bits.

3.7 Example Using a Prototype

We have built a prototype of our signature using boxes with N = 9 compartments. In Figure 4, we show all
the steps to generate a ring signature of a message M = 111111 with λ = 3 and s = 3 group members. Each
group member has a different coloured padlock (blue, orange, and pink) and we have omitted the manual
signatures on the padlocks. The signer is the owner of the key for the pink padlock. We set m = (mk)

N−1
k=0 =

(0, 0, 0, 1, 1, 1, 1, 1, 1) the message that starts with λ = 3 times 0 and ends with the bits of M .

Step A: The signer places the three public key boxes side by side. The state of the coins in each of these
boxes is associated with the respective values:

cB = (cB,k)
N−1
k=0 = (1, 1, 0, 0, 1, 0, 1, 1, 0)

cO = (cO,k)
N−1
k=0 = (0, 1, 1, 1, 0, 1, 0, 1, 1)

cP = (cP,k)
N−1
k=0 = (1, 1, 0, 1, 1, 0, 1, 0, 0)

Step B: The signer shakes the blue member box.
Step C: The signer shakes the orange member box.
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Fig. 4. Signature of M = 111111 in a ring of s = 3 users with security parameter λ = 3 and boxes with N = 9
compartments.
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Step D: At this step, the coins in each box are associated with the values:

cB = (cB,k)
N−1
k=0 = (0, 0, 0, 0, 0, 0, 1, 1, 1)

cO = (cO,k)
N−1
k=0 = (0, 1, 0, 1, 0, 0, 0, 1, 0)

cP = (cP,k)
N−1
k=0 = (1, 1, 0, 1, 1, 0, 1, 0, 0)

Step E: The signer opens the pink paddlock using their key, then opens the box.
Step F: The signer rearranges the coins in their open box in such a way that cP,k = mk ⊕ cB,k ⊕ cO,k

for 0 ≤ k < N (exclusive “or” ⊕ is equivalent to addition/substraction modulo 2). In other words, for
each index k they make the number of coins on the blue side (corresponding to 1) even if the bit of the
message mk is 0, and odd if the bit of the message mk is 1. This results in the following configuration:

cB = (cB,k)
N−1
k=0 = (0, 0, 0, 0, 0, 0, 1, 1, 1)

cO = (cO,k)
N−1
k=0 = (0, 1, 0, 1, 0, 0, 0, 1, 0)

cP = (cP,k)
N−1
k=0 = (0, 1, 0, 0, 1, 1, 0, 1, 0)

Step G: The signer closes their box with their padlock.
Step H: The signer shuffles the boxes: the blue member’s box stays first, and the orange and pink members’

boxes are swapped.

At the end of the signature, the coins are associated with the following binary values:

cB = (cB,k)
N−1
k=0 = (0, 0, 0, 0, 0, 0, 1, 1, 1)

cP = (cP,k)
N−1
k=0 = (0, 1, 0, 0, 1, 1, 0, 1, 0)

cO = (cO,k)
N−1
k=0 = (0, 1, 0, 1, 0, 0, 0, 1, 0)

Any user can compute: (cB,k ⊕ cP,k ⊕ cO,k)N−1k=0 = (0⊕ 0⊕ 0, 0⊕ 1⊕ 1, 0⊕ 0⊕ 0, 0⊕ 0⊕ 1, 0⊕ 1⊕ 0, 0⊕ 1⊕
0, 1⊕ 0⊕ 0, 1⊕ 1⊕, 1⊕ 0⊕ 0) = (0, 0, 0, 1, 1, 1, 1, 1, 1), and thus verify that (cB,k ⊕ cP,k ⊕ cO,k)λ−1k=0 = (0, 0, 0)

and (cB,k ⊕ cP,k ⊕ cO,k)N−1k=λ = M . This is equivalent to verifying that for each index k, the number of blue
coins in the k-th compartments of the 3 boxes is even if mk = 0 (i.e., for 0 ≤ k ≤ 2), and odd if mk = 1
(i.e., for 3 ≤ k ≤ 8). Note that the probability of producing a valid signature without the keys (by shaking
the boxes only) is 1/2λ = 1/8 (this is the probability that the first three sums of bits give 0). Of course, to
have a more realistic probability of preventing the generation of random message signatures, we would need
to use boxes with more compartments.

3.8 Generalising on Larger Alphabets with Dice

A coin can be thought of as a two-sided die. By generalising the principle of our signature, we could sign
messages on alphabets of n symbols using n-sided dice (numbered from 1 to n). For example, using 30-sided
dice, any integer i between 1 and 26 can be associated with the i-th letter of the Latin alphabet, and 27, 28, 29,
and 30 can be respectively associated with space, comma, dot, and a special character ’*’. Figure 5 shows
our prototype used with 30-sided dice (whose diameter is small enough for the dice to roll freely through the
compartments).

The idea remains the same: the i-th character of the signed message corresponds to the sum modulo n
of the values at the top of the dice in the i-th compartment of the boxes of the members of the group. The
first λ characters must correspond to the special character ’*’, so the probability of generating a signature
for a valid random message is 1/nλ. On the other hand, a signer who has the key to one of the padlocks will
always be able to arrange the dice to obtain a valid signature for a given message.

In Figure 6, we show all the steps to generate a ring signature of a message M = "hello." with our
prototype using 30-sided dice and with λ = 3 and s = 3. Each user has a different coloured padlock (green,
red, and yellow) and we have omitted the manual signatures on the padlocks. The signer is the owner of the

9



Fig. 5. Two public keys of our prototype used with 30-sided dice

key for the yellow padlock. We set m = (mk)
N−1
k=0 = (0, 0, 0, 8, 5, 12, 12, 15, 29) the message that starts with

λ = 3 times 0 (that corresponds to the sepcial character ’*’ since 30 mod 30 = 0) and ends with the integers
that correspond to the characters ’h’, ’e’, ’l’, ’l’, ’o’, and ’.’.

Step A: The signer places the three public key boxes side by side. The dice in each of these boxes indicate
the respective values:

cG = (cG,k)
N−1
k=0 = (28, 11, 29, 13, 25, 28, 30, 15, 11)

cR = (cR,k)
N−1
k=0 = (9, 11, 9, 16, 27, 30, 13, 1, 8)

cY = (cY,k)
N−1
k=0 = (21, 8, 21, 15, 27, 1, 16, 15, 20)

Step B: The signer shakes the green group member box.
Step C: The signer shakes the red group member box.
Step D: At this step, the dice in each of these boxes indicate the respective values:

cG = (cG,k)
N−1
k=0 = (6, 1, 29, 13, 28, 20, 8, 27, 11)

cR = (cR,k)
N−1
k=0 = (7, 29, 28, 14, 10, 17, 16, 19, 21)

cY = (cY,k)
N−1
k=0 = (21, 8, 21, 15, 27, 1, 16, 15, 20)

Step E: The signer opens the yellow paddlock using their key, then opens the box.
Step F: The signer rearranges the dice in their open box in such a way that cY,k = mk− cG,k− cR,k mod 30

for 0 ≤ k < N . This results in the following configuration (where 0 is encoded by 30 on the dice, since
dice are numbered from 1 to 30):

cG = (cG,k)
N−1
k=0 =(6, 1, 29, 13, 28, 20, 8, 27, 11)

cR = (cR,k)
N−1
k=0 =(7, 29, 28, 14, 10, 17, 16, 19, 21)

cY = (cY,k)
N−1
k=0 =(−6− 7 mod 30,−1− 29 mod 30,−29− 28 mod 30,

8− 13− 14 mod 30, 5− 28− 10 mod 30, 12− 20− 17 mod 30,

12− 8− 16 mod 30, 15− 27− 19 mod 30, 29− 11− 21 mod 30)

=(17, 0, 3, 11, 27, 5, 18, 29, 27)

Step G: The signer closes their box with their padlock.
Step H: The signer shuffles the boxes: the order of the boxes changes from green then red then yellow to

red then yellow then green.

10



Fig. 6. Signature of M = "hello." in a ring of s = 3 users with security parameter λ = 3 and boxes with N = 9
compartments.
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At the end of the signature, the dice are in the following configuration:

cR = (cR,k)
N−1
k=0 = (7, 29, 28, 14, 10, 17, 16, 19, 21)

cY = (cY,k)
N−1
k=0 = (17, 0, 3, 11, 27, 5, 18, 29, 27)

cG = (cG,k)
N−1
k=0 = (6, 1, 29, 13, 28, 20, 8, 27, 11)

Any user can verify the signature by computing:

(cR,k + cY,k + cG,k mod 30)N−1k=0

= (7 + 17 + 6 mod 30, 29 + 0 + 1 mod 30, 28 + 3 + 29 mod 30,

14 + 11 + 13 mod 30, 10 + 27 + 28 mod 30, 17 + 5 + 20 mod 30,

16 + 18 + 8 mod 30, 10 + 29 + 27 mod 30, 21 + 27 + 11 mod 30)

= (0, 0, 0, 8, 5, 12, 12, 15, 29),

and thus verify that (cR,k+ cY,k+ cG,k mod 30)λ−1k=0 = (0, 0, 0) and that (cR,k+ cY,k+ cG,k mod 30)N−1k=λ =M .
Note that the probability of producing a valid signature without the keys (by shaking the boxes only) is

1/nλ = 1/27000 (this is the probability that the first three sums give 0).

4 Security Analysis

In this section, we identify the assumptions required to ensure the security of our prototype.

Assumptions. The following properties are assumed to be true:

1. It is not possible to break or force open a compartmentalised box, i.e., a box can only be opened by its
lid using the mechanism provided for this purpose.

2. It is impossible to forge a user’s manual signature without being that user.
3. Padlocks are unbreakable and cannot be opened without a key. In particular, it is impossible to forge a

key for a padlock.
4. A padlock attached to the latch of a box prevents the lid of the box from being opened by the mechanism

provided for this purpose.
5. An object cannot be moved to another compartment when a box is locked.
6. The only action that can be performed on a closed box to move the objects contained in its compartments

is to shake it.
7. Shaking the box when it contains dice is equivalent to rolling the dice. More precisely, given a box with

dice, and knowing the previous position of the dice, it is impossible to determine whether the box has been
shaken, or opened, the dice rearranged to show a random value chosen from the uniform distribution,
and the box closed again.

These assumptions allow us to claim the following two theorems. For each of them we give an intuitive
explanation of the results, then we give a security proof in a semi-formal style: we show a sequence of
games [14] that reduce to each other by hops, eliminating events whose probability of occurrence is at most
negligible under our assumptions. In our security proofs, we consider that the physical actions of closing a
padlock, opening a padlock, closing a box, opening a box, moving an object, and shaking a box are achievable
by an adversary (modelled by a p.p.t. algorithm) in constant time. In general, no basic physical operation
depends on the security parameter λ. We also consider that any physical action performed by the adversary
can be observed by the challenger who simulates the security experiment for them.

Theorem 2. Our physical ring signature is unforgeable under Assumption 1, 2, 3, 4, 5, 6, and 7. More
precisely, for any integer s, any security parameter λ, any p.p.t. algorithm A, and any polynomial function
q, the probability that the s-unforgeability experiment on our physical ring signature using n-sided dice for A
returns 1 is bounded by q(λ)

nλ
, where q(λ) is the number of times that a box is shaken during the experiment.

12



According to Assumptions 1, 2, 3, and 4, an adversary cannot manually sign a box in place of a member
of the group, and cannot break/force the box and its mechanism if it is locked by a padlock. Nor can they
open a box to manually change the value of the dice under Assumption 5 and 6. Furthermore, according
to Assumption 6 and 7, they cannot bias the roll of the dice so that it is not uniform when they decide to
shake a box. Their only possible strategy is to hope that shaking the boxes will produce a valid signature. To
do this, the first λ dice in the boxes must match the special character ’*’, which happens with a negligible
probability of at most q(λ)

nλ
where q(λ) is the number of times a box is shaken.

Proof (Proof (Theorem 2)). Let s be an integer, and A be a p.p.t. algorithm. We consider the following
sequence of games.

Game G0: In this game, a challenger simulates the s-unforgeability experiment on our physical ring signature
for A. The event “A wins G0” denotes that the unfogeability expermient returns 1.

Game G1: Same as G0, except that if A breaks or opens a box on an other way that by its lid using the
mechanism provided for this purpose, forge a group member’s manual signature, or breaks or opens a pad-
lock without its key, then the challenger returns 0. According with Assumption 1, 2, and 3, we have that
Pr[A wins G0] = Pr[A wins G1].

Game G2: Same as G1, except that if A opens the box in one of the public keys pki, then the challenger
returns 0. Note that at this step the public key boxes cannot be opened except by their normal opening
mechanism, and each box is locked with a padlock that cannot be broken. According with assumption 4, we
have that Pr[A wins G1] = Pr[A wins G2].

Game G3: Same as G2, except that if A moves one die to another compartment in the box of a public key,
then the challenger returns 0. Note that at this step the public key boxes cannot be opened. According with
assumption 5, we have that Pr[A wins G2] = Pr[A wins G3].

At this step, the only way to change the position of the dice in the boxes corresponding to the public
keys is to shake them, according to Assumption 6. In addition, according to Assumption 7, shaking a box is
equivalent to giving random values to the dice inside.

Game G4: Same as G3, except that if A returns a valid signature beginning with λ times the special character
’*’, then the challenger returns 0. We claim that |Pr[A wins G3]− Pr[A wins G4]| ≤ q(λ)

nλ
.

In order for the k-th symbol of the message to be ’*’, we must have the property
∑s−1
i=0 ci,k mod n = 0,

where ci,k is the value indicated by the die in the k-th compartment of the box of the i-th member of the
group. Since the ci,k are all drawn in a uniform distribution (when the box is shaken), evaluating the proba-
bility of having

∑s−1
i=0 ci,k mod n = 0 is equivalent to fixing the value ci,k of the last s−1 dice and evaluating

the probability of drawing the value c0,k verifying
∑s−1
i=0 ci,k mod n = 0. This probability is 1/n. Moreover,

the adversary must succeed this for all 0 ≤ k ≤ λ − 1, knowing that all the ci,k are randomly refreshed
when a box is shaken. Thus, the probability of drawing the values c0,k verifying

∑s−1
i=0 ci,k mod n = 0 for all

0 ≤ k ≤ λ− 1 is 1/nλ. Since the number of times a box is shaken during the experiment is q(λ), the adver-
sary has at most q(λ) tries to draw the correct c0,k (we assume that the box of each public key was shaken
before being distributed). So A has a probability bounded by q(λ)

nλ
to draw all the correct c0,k together for

0 ≤ k ≤ λ− 1 during the experiment, and so having λ times the symbol ’*’ at the beginning of its returned
signing message, which concludes the proof of the claim.

Note that in G4, A can no longer win, since a signature must begin with λ times the special character
’*’ to be valid, so its probability of winning the game is 0. Since Pr[A wins G0] = Pr[A wins G3], we
have |Pr[A wins G0] − Pr[A wins G4]| ≤ q(λ)

nλ
, so Pr[A wins G0] ≤ q(λ)

nλ
. Finally, the probability that the

unforgeability experiment returns 1 is bounded by the negligible function q(λ)
nλ

, which concludes the proof.
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Theorem 3. Our physical ring signature is anonymous under Assumption 7. More precisely, for any integer
s, any security parameter λ, and any p.p.t. algorithm A, the probability that A returns 1 on the (s, 0)-
anonymity experiment is equals to the probability that A returns 1 on the (s, 1)-anonymity experiment on
our physical ring signature.

Assumption 7 ensures that it is not possible to distinguish from a physical point of view whether a box
has been shaken or whether the things in it have been moved manually, and Theorem 1 ensures that it is
not possible to distinguish from a computational point of view which dice value have been drawn randomly
and which have been chosen to complete the sum in order to obtain the message. Thus, an adversary has no
way of distinguishing which box has been opened, and therefore the identity of the signer.

Proof (Proof (Theorem 3)). Let s be an integer, and A be a p.p.t. algorithm. We consider the following
sequence of games.

Game G0: In this game, a challenger simulates the (s, 0)-anonymity experiment on our physical ring signa-
ture for A. The event “b∗ = 1 in G0” denotes that A returns 1 at the end of the experiment.

Game G1: Same as G0, except that when the challenger signs the message m chosen by A, each time they
are supposed to shake a box, they instead open it, manually arrange the dice to give them a random value,
and close the box again. Under Assumption 7, we have that Pr[b∗ = 1 in G0] = Pr[b∗ = 1 in G1].

Game G2: Same asG1, except that the challenger signs with ski1 instead of ski0 . Assuming that Pr[b∗ = 1 in G1] 6=
Pr[b∗ = 1 in G2], we will show that there exists a distinguisher D that contradicts Theorem 1.

We build D as follows: D simulates G2 to A, receives (R,m, i0, i1) from A, sets |R| = s′, and receives
the input (xi)s

′−1
i=0 . We parse R as {pk′i}s

′−1
i=0 , m as (mk)

N−1
k=0 , and xi as (xi,k)

N−1
k=0 for 0 ≤ i < s′. According

to the definition of D in Theorem 1 on the values N,n, s′,m, and (i0, i1), the input (xi)
s′−1
i=0 verifies mk =∑s′−1

i=0 xi,k mod n for all 0 ≤ k < N . To forge the signature, D opens the box corresponding to each key pk′i
and arranges the dice in such a way that the die in the k-th compartment of the i-th box indicates the value
xi,k. Finally, D sends the resulting signature to A, receives b∗ from A, and returns it. We have:

Pr

∀i ∈ Zs′\{i0}, xi $← ZNn ;

∀k ∈ ZN , xi0,k ←

(
mk −

s−1∑
i=0;i6=i0

xi,k

)
mod n;

: 1← D((xi)s
′−1
i=0 )


= Pr[b∗ = 1 in G1];

Pr

∀i ∈ Zs′\{i1}, xi $← ZNn ;

∀k ∈ ZN , xi1,k ←

(
mk −

s−1∑
i=0;i 6=i1

xi,k

)
mod n;

: 1← D((xi)s
′−1
i=0 )


= Pr[b∗ = 1 in G2].

This contradicts Theorem 1 on the valuesN,n, s′,m, and (i0, i1) for the distinguisherD, because Pr[b∗ = 1 in G1] 6=
Pr[b∗ = 1 in G2]. Finally, we deduce that Pr[b∗ = 1 in G1] = Pr[b∗ = 1 in G2].

Game G3: Same as G2, except that when the challenger signs the message m chosen by A, each time they
are supposed to open a box, manually arrange the dice to give them a random value, and close the box again,
they instead shake the box. Under Assumption 7, we have that Pr[b∗ = 1 in G2] = Pr[b∗ = 1 in G3].

We observe that in G3 the challenger simulates the (s, 1)-anonymity experiment on our physical ring
signature for A. Moreover, we have shown that Pr[b∗ = 1 in G0] = Pr[b∗ = 1 in G3]. Finally, we deduce that
the probability that A returns 1 on the (s, 0)-anonymity experiment is equals to the probability that A
returns 1 on the (s, 1)-anonymity experiment on our physical ring signature, which concludes the proof.
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5 Conclusion

In this paper we have described a physical ring signature that is easy to set up and that uses everyday
objects. We have built a prototype, and we believe that it can be used to explain in a playful way how a ring
signature works to a public not familiar with cryptography. Some ring signatures have additional properties,
such as linkability (any user can link two signatures produced by the same member) and traceability (an
authority can lift anonymity in some cases). In future work, we would like to find ways to adapt our physical
ring signature, or propose new ones, to achieve these properties.
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A Proof of Theorem 1

To prove Theorem 1, we prove the following two lemmas.

Lemma 1. Let n be an integer. For any m ∈ Zn and any distinguisher D, we have:

Pr[x1
$← Zn;x0 ← m− x1 mod n; : 1← D(x0, x1)] =

Pr[x0
$← Zn;x1 ← m− x0 mod n; : 1← D(x0, x1)]

Proof. In the first case, since x1
$← Zn and x0 ← m−x1 mod n, each pair (x0, x1) ∈ Zn such that x0 +x1 =

m mod n is generated with probability 1/n. We remark that each of the n pairs contains a different x0, so
each x0 ∈ Zn appears with probability 1/n. Similarly, in the second case, if x0

$← Zn and x1 ← m−x0 mod n,
then each pair (x0, x1) ∈ Zn such that x0 + x1 = m mod n with a different x1 is generated with probability
1/n. We deduce that the two cases are indistinguishable, which concludes the proof.

Lemma 2. Let n and s be two integers. For any m ∈ Zn, any pair (i0, i1) ∈ Z2
s such that i0 6= i1, and any

distinguisher D, we have:

Pr

[
∀i ∈ Zs\{i0}, xi $← Zn;
xi0 ←

(
m−

∑s−1
i=0;i6=i0 xi

)
mod n;

: 1← D((xi)s−1i=0 )

]
=

Pr

[
∀i ∈ Zs\{i1}, xi $← Zn;
xi1 ←

(
m−

∑s−1
i=0;i6=i1 xi

)
mod n;

: 1← D((xi)s−1i=0 )

]

Proof. If i0 = i1, the result is trivial because the two expressions are the same. Else, by setting:

m′ =

m− s−1∑
i=0;i 6∈{i0,i1}

xi

 mod n,

we have:

xib =

m− s−1∑
i=0;i 6=ib

xi

 mod n⇔ xi0 = m′ − xi1 mod n (1)

⇔ xi1 = m′ − xi0 mod n. (2)
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We recall that in the two cases, each xi such that i 6∈ {i0, i1} is generated at random. Therefore, these
values cannot be used to distinguish between the two cases. If xi1 is chosen at random, then Equation 1
corresponds to the expression in the first probability in Lemma 1. Similarly, if xi0 is chosen at random, then
Equation 2 corresponds to the expression in the second probability in Lemma 1. The values generated by
these two expressions are therefore indistinguishable according to Lemma 1. Finally, the proof of Lemma 2
follows from Lemma 1.

Lemma 2 can easily be generalized to the case where the xi are vectors of integers, which leads directly to
Theorem 1.
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